Home / Environment / News Tools: Save | Print | E-mail | Most Read
Why Old Forests May Offer New Hope
Adjust font size:

In 1969, renowned American scientist E.P. Odum claimed carbon absorption in old-growth forests was balanced by the carbon the forest released. Odum was an environmental research pioneer, who championed the importance of "ecology" as a discipline. His old-forest theory was published in Science magazine that year, and provided models for related researches.

 

However, the theory is now challenged by a 400-year-old forest in south China, which soaked up more carbon than previously thought, according to a latest study published in Science last week.

 

The latest discovery may also make the preservation of old-growth forests forests of more than 100 years old a higher priority in carbon trading and other efforts to tackle global warming.

 

In the article, Chinese scientists demonstrated that the top 20 centimeters of soil in the old-growth forest of the Dinghushan Biosphere Reserve absorbed an unexpectedly high rate of atmospheric carbon from 1979 to 2003. "It (the carbon storage) increased by 0.61 tons a hectare annually," said Zhou Guoyi, the first author of the paper, who works at the South China Institute of Botany under the Chinese Academy of Sciences.

 

Zhou and his colleagues measured carbon in the soil collected from a studied area of seven hectares in the Dinghushan reserve, which lies 20 kilometers away from Guangzhou city proper.

 

They found organic carbon concentrations in the top 20 centimeters of the soil increased from about 1.4 per cent to 2.35 percent over that 24-year period.

 

"The finding can probably crack a current enigma confronting global scientific academia about carbon imbalance," said Zhou in an exclusive interview with China Daily.

 

What he refers to is an imbalance between the measured amount of carbon in the atmosphere and its theoretical estimate.

 

Zhou said scientists calculated the carbon quantity in the air based on the carbon released from burning fossil fuels, discharged from land-use change, and absorbed by oceans.

 

"The calculated result, however, is bigger than what scientists have measured," said the researcher.

 

"Something is missing in the measurement. One of the lost parts, as our study confirms, is the role of old-growth forest, which can absorb and store more greenhouse gases from the atmosphere than previously thought."

 

If the fact proves to be true with all old-growth forests in the world, it would explain a third of the "miscalculated" carbon storage.

 

The discovery will give developing countries, where old-growth forests are widespread, a "more powerful weapon" to argue for compensation from richer countries through global carbon trade, according to Zhou.

 

Carbon trade is a mechanism developed under the Kyoto Protocol's Clean Development Mechanism (CDM) to reduce global emission of carbon dioxide, the major greenhouse gas leading to global warming. Under the mechanism, industrialized countries pay developing nations for reducing the latter's carbon dioxide emissions and meeting their own emission limits.

 

Previous studies have testified that young forest can store large amounts of carbon.

 

"Trees in that ecosystem can reserve the amount of carbon equivalent to half of their increased biomass, let alone the soil in it, which can grab as much carbon as that of old-growth forest," Zhou said.

 

In November, the country started its first CDM project on forest carbon storage in the Guangxi Zhuang Autonomous Region with the sponsorship of World Bank.

 

The project plans to grow two 2,000-hectare forests in the region, which are expected to consolidate 500,000 tons of carbon dioxide within 15 years. "Based on our study, preservation of old-growth forest can also be seen a way of storing carbon and thus be traded," Zhou said.

 

Old-growth forest is mostly seen in tropical and subtropical developing countries. In China, this type of forest is distributed mostly in the southwestern and northeastern regions and along the Yarlung Zangbo River. A government report issued last year predicted that by 2010, the country's old-growth forest accumulation would stand approximately 3 billion cubic meters.

 

Li Yule, a domestic environmental expert, said the development of the large forest carbon exchange industry was a positive step, however foresaw barricades along the way.

 

"It is difficult to develop good methodology," said Li, who works at the Chinese Academy of Agricultural Sciences.

 

Moreover, rich countries were reluctant to become involved because "the forest may be chopped down one day after the project finishes," she said.

 

A World Bank report released in October estimates that deforestation accounts for 20 per cent of emissions of carbon dioxide worldwide annually.

 

The report also says that the potential benefits of using forests to store carbon dioxide have not been explored by the current carbon market, and urges for sustainable forest management to be integrated into the global strategy for reducing greenhouse gas emissions, according to UK-based science website portal SciDev.net.

 

Li hesitates to lend support to Zhou's opinion about the benefit of his research on carbon trade, since "old-growth forests account for too little an amount of carbon absorption based on the research," she explained.

 

She also added the current practice of CDM, which only includes forests planted after 1990 for carbon trading, also limits the application of Zhou's theory in this field.

 

However, despite a detection of carbon storage increase in old-growth forest, Zhou and his colleagues are not yet clear about the driving forces behind it.

 

But the researcher puts forward his three assumptions.

 

"The unusual carbon storage increase must come from a restrained effect of micro-organism, which is supposed to decompose organic matter in the soil to unlock carbon," Zhou said.

 

He estimated the increased acid deposition in the air and growing proportion of nitrogen to phosphorus in the soil, both due to industrial pollution, might have curbed the activities of micro-organism.

 

In addition, the rising temperature resulting from global warming may have grabbed away more water from the soil and restrained the speed of soil degradation process.

 

"In our studied area, the temperature has risen by 0.6C in recent three decades," the researcher said.

 

Though in short of funding, Zhou said he would continue further analysis about these hypotheses by conducting more studies.

 

(China Daily December 5, 2006)

Tools: Save | Print | E-mail | Most Read

Related Stories
China Calls for Deadline for Post-Kyoto Talks
WB, Chinese Firms Seal Deals to Cut Greenhouse Gas Emissions
New Deals Highlight Surging Chinese Emissions Market
Chinese Scientists Measure How Trees Absorb Carbon
SiteMap | About Us | RSS | Newsletter | Feedback
SEARCH THIS SITE
Copyright ? China.org.cn. All Rights Reserved ????E-mail: webmaster@china.org.cn Tel: 86-10-88828000 京ICP證 040089號
主站蜘蛛池模板: 玩弄放荡人妻少妇系列视频 | 欧美日韩在线一区| 全彩无修本子里番acg| 跳蛋在里面震动嗯哼~啊哈...| 国产欧美日韩精品专区| 800av我要打飞机| 够爽影院vip破解版| 一个人看的www在线免费视频 | 遭绝伦三个老头侵犯波多野结衣| 国产白白视频在线观看2| 69农夫和老妇重口小说| 多男同时插一个女人8p| ww在线观视频免费观看| 成人免费a级毛片无码网站入口| 久久av高潮av无码av喷吹| 日韩专区第一页| 久人人爽人人爽人人片AV| 欧美MV日韩MV国产网站| 亚洲成a人片在线观看久| 爱爱视频天天干| 内射白嫩少妇超碰| 精品国精品自拍自在线| 啊啊啊好大在线观看| 色网站在线视频| 国产区香蕉精品系列在线观看不卡| 很黄很污的视频在线观看| 国产精品入口麻豆高清| 91久国产在线观看| 国产香蕉一区二区三区在线视频| 99精品视频99| 天天做天天爱天天综合网 | 免费无码不卡视频在线观看| 精品国产自在在线在线观看| 嗨动漫在线观看| 羞羞视频网站免费入口| 国产91乱剧情全集| 色欧美片视频在线观看| 国产三级在线观看完整版| 荡公乱妇hd在线播放| 国产一国产二国产三国产四国产五| 麻豆一卡2卡三卡4卡网站在线 |